UNIVERSITY OF YORK

POSTGRADUATE PROGRAMME SPECIFICATION

This document a the programme(applies t s) in:	to student	s who commence	2016/7				
Awarding institu	ition			Teaching institut	ion			
University of York	K			University of York				
Department(s)								
Centre for Lifelon	g Learni	ng						
Award(s) and pr	ogramm	ne title(s)		Level of qualifica	tion			
PG Diploma in As	stronomy	/		Level 7 (Masters)				
Award(s) availab	ble only	as interim	awards					
PG Certificate in	Astronor	ny						
Admissions crite	eria							
Normally students	s will be	expected t	o hold a Bachelor's Deg	gree in a related sul	bject area. CLL	will also		
favourably consid	ler any s	tudent prev	viously awarded a BA/B	Sc in any subject, a	and with evider	ice of		
recent HE level s	tudy. Pre	evious ma	ths skills, to A-Level o	or equivalent stand	dard, are esse	ntial.		
CLL reserves the	right to	ask any sti	udent for academic wor	k to support their ap	oplication.			
Any student may	be called	d to intervie	ew. It is anticipated that	students will be lar	gely from a sci	ence		
background. The	program	nme will be	targeted at students wh	no will already have	e the required s	kills to		
study at M level.								
Students will not	be accep	oted to the	programme unless they	/ can demonstrate I	the required ski	lls, which		
could include a m	laths tes	t for non-tra	aditional applicants.					
Students must na	ive an IE	LIS score	of 7.0 where appropria					
Length and state	us of the	e program	me(s) and mode(s) of	study				
Brogrammo	Longt	h (voarc)	Start datas/months		Modo			
Frogramme	and	status	(if applicable – for		woue			
	/full_ti	sialus imo/nart-	nrogrammes that					
	(iuii-ti +i	ine/part-	have multiple					
	u	ine)	intakes or start					
			datas that differ from					
			the usual acadomic					
			youry	Face-to-face.	Distance	Other		
				campus-based	learning	•		
PG Diploma in	2 years	s part-	Annual October start	1 residential	Yes			
Astronomy	time (u	sual	date	weekend, per				
maximum of 3				academic vear.				
vears * Ser			* Separate Januarv	,				
registration) start date (p.5)								
Language of stu	dy	English	1	1	1			
		Ĭ						
Programme acc	Programme accreditation by Professional. Statutory or Regulatory Bodies (if applicable)							
N/A		-	-		/			
-								

Educational aims of the programme(s)

For the Certificate:

- Students will have a comprehensive knowledge of the development of astronomy, astronomy in the visible region of the electromagnetic spectrum, the solar system and stellar physics.
- Students will learn that physics is a quantitative subject and appreciate the use and power of mathematics for modelling the physical world and solving problems.
- Students will have developed skills in research and planning and their ability to assess critically the link between theoretical results and experimental observation.
- Students will develop the ability to solve advanced problems in physics using appropriate mathematical tools.
- Students will be able to identify the relevant physical principles, to translate problems into mathematical statements and apply their knowledge to obtain order-of-magnitude or more precise solutions as appropriate.
- Students will develop the ability to plan and execute under supervision an experiment or
 investigation, analyse critically the results and draw valid conclusions. Students should be able to
 evaluate the level of uncertainty in their results, understand the significance of error analysis and
 be able to compare these results with expected outcomes, theoretical predictions or with
 published data.

Additionally for the Diploma:

- In addition to the aims noted above, students completing the diploma will have a deeper understand of the practical aspect of Astronomy outside of the visible region of the electromagnetic spectrum and cosmology.
- Students will have a more complete working knowledge of a variety of experimental, mathematical and computational techniques applicable to current research within physics.

Intended learning outcomes for the programme – and how the programme enables students to
achieve and demonstrate the intended learning outcomes

This programme provides opportunities for students to develop and demonstrate knowledge and understanding qualities, skills and other attributes in the following	The following teaching, learning and assessment methods enable students to achieve and to demonstrate the programme learning outcomes:	
areas:		
A: Know	ledge and understanding	
 Students will learn that physics is a quantitative subject and appreciate the use and power of mathematics for modelling the physical world and solving problems. The students' skills in research and planning and their ability to assess critically the link between 	 Learning/teaching methods and strategies (relating to numbered outcomes): Delivery of online materials (1,3,4,5,6) Online workshops/blogs (1,3,4,5,6) Face-to-face residential workshops (1,2,3,4,5,6) Reading of primary/secondary texts (1,2,3,4,5,6) 	

		Turner /meeth and a figure and such as the summer of
	theoretical results and experimental	Types/methods of assessment (relating to numbered
2	observation will develop on	outcomes).
3.	Students will develop an	
	understanding of most rundamental	• Formative weekly problems (1,2,3,4,6)
	laws and principles of astrophysics,	 Short critical essays (1,2,3,4,6)
	along with their application to a	 Research project (1,2,3,4,5,6)
	variety of areas in astrophysics,	 Poster (2,6)
	some of which are at (or are	 Maths-based problems (1,2,3,4,6)
	informed by) the forefront of the	
	discipline	
4.	Students will develop the ability to	
	solve advanced problems in	
	physics using appropriate	
	mathematical tools. Students will	
	be able to identify the relevant	
	physical principles, to translate	
	problems into mathematical	
	statements and apply their	
	knowledge to obtain order-of-	
	magnitude or more precise	
	solutions as appropriate.	
5.	Students will develop the ability to	
	plan and execute under supervision	
	an experiment or investigation,	
	analyse critically the results and	
	draw valid conclusions. Students	
	should be able to evaluate the level	
	of uncertainty in their results,	
	understand the significance of error	
	analysis and be able to compare	
	these results with expected	
	outcomes, theoretical predictions or	
	with published data. They should	
	be able to evaluate the significance	
	of their results in this context.	
6.	Students will develop a working	
	knowledge of a variety of	
	experimental, mathematical and	
	computational techniques	
	applicable to current research	
	within physics.	
	B: (i) Sł	kills – discipline related
At the	end of the module, students will be	Learning/teaching methods and strategies (relating to
able to	:	numbered outcomes):
1.	Formulate and tackle problems in	 Delivery of online materials (1,2,3,4)
-	pnysics	 Online workshops/blogs (1,2,3,4)
2.	identity the appropriate physical	 Face-to-face residential workshops (1,2,3,4)
~	principles to solve problems	 Reading of primary/secondary texts (1,2,3,4)
3.	Use special and limiting cases and	
	order-or-magnitude estimates to	
	guide their thinking about a	

4.	problem and how to present the solution, making their assumptions and approximations explicit Use mathematics to describe the physical world	 Types/methods of assessment (relating to numbered outcomes) Formative weekly problems (1,2,3,4) Short critical essays (4) Research project (1,2,3,4) Maths-based problems (1,2,3,4)
	B: (ii)) Skills – transferable
At the	end of the module, students will be	Learning/teaching methods and strategies (relating to
): Communicato complex esigntific	numbered outcomes):
2.	ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively Manage their own learning and to make use of appropriate texts,	 Delivery of online materials (1,2,3,4) Online workshops/blogs (1,2,3,4,5,6) Face-to-face residential workshops (1,2,3,4,5,6) Reading of primary/secondary texts (1,2,3,4)
	research articles and other primary	Types/methods of assessment (relating to numbered
3	Demonstrate problem-solving skills	outcomes)
3. 4. 5. 6.	Display developed investigative skills Demonstrate ICT skills Present themselves with enhanced personal skills	 Formative weekly problems (2,3,4) Short critical essays (1,2,3,4) Research project (1,2,3,4,5) Poster (1,2,4,5) Maths-based problems (2,3,4)
	C: Experi	ience and other attributes
.At the	end of the module, students will:	Learning/teaching methods and strategies (relating to
1.	Understand various methods used	numbered outcomes):
2	in modern Astronomy	Delivery of online materials (1,2)
Ζ.	physics implicit within Astronomy	 Online workshops/blogs (1,2) Eace to face residential workshops (1,2)
	and Astrophysics	 Reading of primary/secondary texts (1,2)
		Types/methods of assessment (relating to numbered
		outcomes)
		 Formative weekly problems (1,2) Short critical essays (1,2)
		Research project (1.2)
		• Poster (1,2)
		Maths-based problems (1,2)

Relevant Quality Assurance Agency benchmark statement(s) and other relevant external reference points (e.g. National Occupational Standards, or the requirements of Professional, Statutory or Regulatory Bodies)

The programme will be aligned to the postgraduate QAA benchmark statements for Physics, Astronomy, and Astrophysics issued in 2008: http://www.qaa.ac.uk/en/Publications/Documents/Subject-benchmark-statement-Physics-astronomy-and-astrophysics.pdf.

University award regulations

To be eligible for an award of the University of York a student must undertake an approved programme of study, obtain a specified number of credits (at a specified level(s)), and meet any other requirements of the award as specified in the award requirements and programme regulations, and other University regulations (e.g. payment of fees). Credit will be awarded upon passing a module's assessment(s) but some credit may be awarded where failure has been compensated by achievement in other modules. The University's award and assessment regulations specify the University's marking scheme, and rules governing progression (including rules for compensation), reassessment and award requirements. The award and assessment regulations apply to all programmes: any exceptions that relate to this programme are approved by University Teaching Committee and are recorded at the end of this document.

Departmental policies on assessment and feedback

Detailed information on assessment (including grade descriptors, marking procedures, word counts etc.) is available in the written statement of assessment which applies to this programme and the relevant module descriptions. These are available in the student handbook and on the Department's website which is available on the VLE: CLL's Induction Site.

Information on formative and summative feedback to students on their work is available in the written statement on feedback to students which applies to this programmes and the relevant module descriptions. These are available in the student handbook and on the Department's website which is available on the VLE: CLL's Induction Site.

Diagrammatic representation of the programme structure, showing the distribution and credit value of core and option modules

Postgraduate Diploma (if applicable)

	Autumn term	Spring term	Summer term
Year One	Introduction to Astronomy	Stellar Physics	The Solar System
Year Two	Infrared and Radio	High Energy Astronomy	The Foundations of
	Astronomy		Cosmology

* For January start dates, the same schedule will be followed, only all modules will be delivered one term later than the model above:

	Spring term	Summer term	Autumn term
Year One	Introduction to Astronomy	Stellar Physics	The Solar System
Year Two	Infrared and Radio	High Energy Astronomy	The Foundations of
	Astronomy		Cosmology

Postgraduate Certificate

Autumn term	Spring term	Summer term
Introduction to Astronomy	Stellar Physics	The Solar System

* For January start dates, the same schedule will be followed, only all modules will be delivered one term later than the model above:

Spring term	Summer term	Autumn term
Introduction to Astronomy	Stellar Physics	The Solar System

Diagrammatic representation of the timing of module assessments and reassessments, and the timing of departmental examination/progression boards

Autumn term	Spring term	Summer term	Summer vacation	Date of final award board
Submission to be Wednesday (Week 11) following conclusion of Week 10 activities.	Submission to be Wednesday (Week 11) following conclusion of Week 10 activities.	Submission to be Wednesday (Week 11) following conclusion of Week 10 activities.	N/A	Late August annually

All reassessments will take place five weeks after completion of marking on initial submissions

* For January start dates, the same schedule will be followed, only all modules will be delivered one term later than the model above:

Spr	ring term	Summer term	Summer	Autumn term	Date of final
			Vacation		award board
Sub	omission to	Submission to	N/A	Submission to	Late Spring
be l	Nednesday	be Wednesday		be Wednesday	term annually
(We	ek 11)	(Week 11)		(Week 11)	-
follo	owing	following		following	
con	clusion of	conclusion of		conclusion of	
Wee	ek 10	Week 10		Week 10	
acti	vities.	activities.		activities.	

Overview of modules

Core module table

Module title	Module code	Credit level ¹	Credit value ²	Prerequisites	Assess ment rules ³	Timing (term and week) and format of main assessment ⁴	Independ ent Study Module? ⁵
Introduction to Astronomy		7	20			 Autumn – week 11 Essay - 2,000 words, 75% Maths-based open book problem questions – 1 week, 25% 	Ν
Stellar Physics		7	20			 Spring – week 11 Maths-based open book problem questions – 1 week, 25% Research project and accompanying written report - 2,000 words, 75% 	Ν

¹ The credit level is an indication of the module's relative intellectual demand, complexity and depth of learning and of learner autonomy. Most modules in postgraduate programmes will be at Level 7/Masters. Some modules are permitted to be at Level 6/Honours but must be marked on a pass/fail basis. See University Teaching Committee guidance for the limits on Level 6/Honours credit. ² The **credit value** gives the notional workload for the module, where 1 credit corresponds to a notional workload of 10 hours (including contact hours, private study and assessment)

³ Special assessment rules (requiring University Teaching Committee approval)

NC – the module cannot be compensated

P/F – the module is marked on a pass/fail basis (NB pass/fail modules cannot be compensated)

NR - there is no reassessment opportunity for this module. It must be passed at the first attempt

⁴ AuT – Autumn Term, SpT – Spring Term, SuT – Summer Term, SuVac – Summer vacation

⁵ Independent Study Modules (ISMs) are assessed by a dissertation or substantial project report. They cannot be compensated (NC) and are subject to reassessment rules which differ from 'taught modules'. Masters programmes should include an ISM(s) of between 60 and 100 credits. This is usually one module but may be more.

The Solar System	7	20	Summer – week 11 • Conference-style poster - 50% • Maths-based open book problem questions – 1 week, 50%	N
Infrared and Radio Astronomy	7	20	Autumn – week 11 • Lab book, 25% • Research project and accompanying written report - 2,000 words, 75%	N
High Energy Astronomy	7	20	 Spring – week 11 Poster - 50% Maths-based open book problem questions – 1 week, 50% 	Ν
The Foundations of Cosmology	7	20	Summer – week 11 • Essay - 2,000 words, 50% • Maths-based open book problem questions – 1 week, 50%	Ν

* For January starters, all Timings are set as one term later.

Option modules

Module title	Module code	Credit level	Credit value	Prerequisit es	Assessmen t rules	Timing and format of main assessment	Independent Study Module?

Transfers out of or into the programme

Exceptions to University Award Regulations approved by University Teaching Committee Exception Date approved

Quality and Standards

The University has a framework in place to ensure that the standards of its programmes are maintained, and the quality of the learning experience is enhanced.

Quality assurance and enhancement processes include:

- The academic oversight of programmes within departments by a Board of Studies, which includes student representation
- The oversight of programmes by external examiners, who ensure that standards at the University of York are comparable with those elsewhere in the sector
- Annual monitoring and periodic review of programmes
- The acquisition of feedback from students by departments.

More information can be obtained from the Academic Support Office: <u>http://www.york.ac.uk/about/departments/support-and-admin/academic-support/</u>

Date on which this programme information was	9/8/2016
upualeu.	
Departmental web page:	www.york.ac.uk/lifelonglearning

Please note

The information above provides a concise summary of the main features of the programme and learning outcomes that a typical students might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the leaning opportunities that are provided.

Detailed information on learning outcomes, content, delivery and assessment of modules can be found in module descriptions.

The University reserves the right to modify this overview in unforeseen circumstances, or where processes of academic development, based on feedback from staff, students, external examiners or professional bodies, requires a change to be made. Students will be notified of any substantive changes at the first available opportunity.